Classification of Imbalanced Data with Random Sets and Mean-Variance Filtering

نویسنده

  • Vladimir Nikulin
چکیده

Imbalanced data represent a significant problem because the corresponding classifier has a tendency to ignore patterns which have smaller representation in the training set. We propose to consider a large number of balanced training subsets where representatives from the larger pattern are selected randomly. As an outcome, the system will produce a matrix of linear regression coefficients where rows represent random subsets and columns represent features. Based on the above matrix we make an assessment of the stability of the influence of the particular features. It is proposed to keep in the model only features with stable influence. The final model represents an average of the single models, which are not necessarily a linear regression. The above model had proven to be efficient and competitive during the PAKDD-2007 Data Mining Competition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

INDUCING VALUABLE RULES FROM IMBALANCED DATA: THE CASE OF AN IRANIAN BANK EXPORT LOANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJDWM

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008